
NESUS
Network for Sustainable Ultrascale Computing

IC1305

Second NESUS Workshop • September 2015 • Vol. I, No. 1

NekBone with Optimized OpenACC
directives

Jing Gong, Stefano Markidis, Michael Schliephake, Erwin Laure

PDC Center for High Performance Computing,

KTH Royal Institute of Technology, Sweden, and

the Swedish e-Science Research Centre (SeRC)

(gongjing,markidis,michs,erwinl)@pdc.kth.se

Luis Cebamanos

The University of Edinburgh, UK

l.cebamanos@epcc.ed.ac.uk

Alistair Hart

Cray Exascale Research Initiative Europe, UK

ahart@cray.com

Misun Min, Paul Fischer

Argonne National Laboratory, U.S.A

mmin,fischer@mcs.anl.gov

Abstract

Accelerators and, in particular, Graphics Processing Units (GPUs) have emerged as promising computing
technologies which may be suitable for the future Exascale systems. Here, we present performance results of
NekBone, a benchmark of the Nek5000 code, implemented with optimized OpenACC directives and GPUDirect
communications. Nek5000 is a computational fluid dynamics code based on the spectral element method used for
the simulation of incompressible flow. Results of an optimized NekBone version lead to 78 Gflops performance
on a single node. In addition, a performance result of 609 Tflops has been reached on 16, 384 GPUs of the Titan
supercomputer at Oak Ridge National Laboratory.

Keywords NekBone/Nek5000, OpenACC, Spectral element method, GPUDirect

I. Introduction

There is a long history to employ GPUs to accelerate
Computational Fluid Dynamic (CFD) codes [1, 2, 3].
However, most implementations use the Nvidia par-
allel programming and computing platform; CUDA.
This means that developers need to rewrite their orig-
inal applications in order to obtain a substantial per-
formance improvement [4].

OpenACC [5] is a directive-based HPC parallel pro-
gramming model, using host-directed execution with
an attached accelerator device. In addition, GPUDi-

rect for communication enables a direct path for data
exchange between GPUs bypassing CPU host mem-
ory. In the paper, we extend the initial results [6, 7, 8]
on porting Nek5000 to GPU systems, to enhance
and optimize the performance on massively parallel
hybrid CPU/GPU systems. In this implementation,
the large-scale parallelism is handled by MPI, while
OpenACC deal with the fine-grained parallelism of
matrix-matrix multiplication.

The paper is organized as follows. In Section II
we give an overview of the Nek5000 and NekBone
code. In Section III we discuss in details regarding

1

mailto:gongjing@kth.se,markidis@kth.se,michs@kth.se,erwinl@pdc.kth.se
mailto:l.cebamanos@epcc.ed.ac.uk
mailto:ahart@cray.com
mailto:mmin@mcs,anl.gov,fischer@mcs.anl.gov

Second NESUS Workshop • September 2015 • Vol. I, No. 1

optimized matrix-matrix multiplications and gather-
scatter operators. The performance results are pro-
vided in Section IV. Finally, we summarize the results
and further works.

II. Nek5000 and its NekBone benchmark

Nek5000 [9] is an open-source code for simulating in-
compressible flows using MPI for parallel communi-
cation. The code is widely used in a broad range of
applications. The Nek5000 discretization scheme is
based on the spectral-element method [10, 11]. In this
approach, the incompressible Navier-Stokes equations
are discretized in space by using high-order weighted
residual techniques employing tensor-product polyno-
mial bases.
In Nek5000, the derivatives in physical space can be

calculated using the chain rule [12],

∂U

∂xl
=

3

∑
m=1

∂U

∂rm

∂rm
∂xl

. (1)

Typically, this equation (1) is evaluated on the GLL
points of N. In the case of three-dimensional with
number of elements E, it creates an additional 9n
memory references and 36n operations, where n =

E · N3 is the total number of gridpoints. The
tensor-product-based operator evaluation can be im-
plemented as matrix-matrix products. This implemen-
tation of (1) makes possible to port the most time-
consuming parts of the code into a GPU-accelerated
system.
NekBone [13] is configured with the basic structure

and user interface of the extensive Nek5000 software.
NekBone solves a standard Poisson equation using
the spectral element method with an iterative conju-
gate gradient solver and exposes the principal compu-
tational kernel to reveal the essential elements of the
algorithmic-architectural coupling that is pertinent to
Nek5000. Consequently, the results from investigat-
ing the performance and profiling of NekBone can be
directly applied to Nek5000.

III. Optimized OpenACC
implementations

III.1 Matrix-Matrix Multiplications

The matrix-matrix multiplications are performed
through the direct operator evaluation based on Equa-
tion (1). Algorithm 1 shows the pseudo-code of

the local_grad_acc subroutine which computes the
derivatives of U using CCE compiler.

Algorithm 1 CCE version for the final optimized
derivative operations.

local_grad_acc
!$ACC DATA PRESENT(w,u,gxyz,ur,us,ut,wk,dxm1,dxtm1)

!$ACC PARALLEL LOOP COLLAPSE(4) GANG WORKER VECTOR

!$ACC& VECTOR_LENGTH(128) PRIVATE(wr,ws,wt)

do e = 1,nelt

do k=1,nz1

do j=1,ny1

do i=1,nx1

wr = 0

ws = 0

wt = 0

!$ACC LOOP SEQ

do l=1,nx1 ! serial loop, no reduction needed

wr = wr + dxm1(i,l)*u(l,j,k,e)

ws = ws + dxm1(j,l)*u(i,l,k,e)

wt = wt + dxm1(k,l)*u(i,j,l,e)

enddo

ur(i,j,k,e) = gxyz(i,j,k,1,e)*wr

$ + gxyz(i,j,k,2,e)*ws

$ + gxyz(i,j,k,3,e)*wt

enddo

enddo

enddo

enddo

!$ACC END PARALLEL LOOP

...

Algorithm 2 illustrates the use of OpenACC direc-
tives with PGI compiler. Here, the OpenACC direc-
tives KERNELS and LOOP VECTOR are used for an opti-
mized performances with the PGI compiler.

The other optimized implementation evaluated in
this paper is to call CUDA device functions from
within OpenACC kernels. This can be done using the
OpenACC directive !$acc host_data use_device.
The OpenACC construct host_data indicates the ad-
dress of device data available on the host, then the
arrays are listed in the use_device clause within the
host_data region. The compiler will generate code to
use the device copy of the arrays, instead of the host
copy. The interface implemented between OpenACC
and CUDA functions is provided below.

!$acc host_data use_device(w,u,ur,us,ut,gxyz,dxm1,dxtm1)

if (nx1.eq.8) then

call ax_cuf8<<<nelt,dim3(nx1,ny1,nz1)>>>(w,u,

$ ur,us,ut,gxyz,dxm1,dxtm1)

...

else if (nx1.eq.14) then

call ax_cuf14<<<nelt,dim3(nx1,ny1,nz1/2)>>>(w,u,

$ ur,us,ut,gxyz,dxm1,dxtm1)

else

call ax_cuf16<<<nelt,dim3(nx1,ny1,nz1/4)>>>(w,u,

2

Second NESUS Workshop • September 2015 • Vol. I, No. 1

Algorithm 2 PGI version for the final optimized
derivative operations.

local_grad_acc
!$ACC DATA PRESENT(w,u,gxyz,ur,us,ut,wk,dxm1,dxtm1)

!$ACC KERNELS

!$ACC& GANG

do e = 1,nelt

!$ACC& LOOP VECTOR(NZ1)

do k=1,nz1

!$ACC& LOOP VECTOR(NY1)

do j=1,ny1

!$ACC& LOOP VECTOR(NX1)

do i=1,nx1

wr = 0

ws = 0

wt = 0

!$ACC LOOP SEQ

do l=1,nx1 ! serial loop, no reduction needed

wr = wr + dxm1(i,l)*u(l,j,k,e)

ws = ws + dxm1(j,l)*u(i,l,k,e)

wt = wt + dxm1(k,l)*u(i,j,l,e)

enddo

ur(i,j,k,e) = gxyz(i,j,k,1,e)*wr

$ + gxyz(i,j,k,2,e)*ws

$ + gxyz(i,j,k,3,e)*wt

enddo

enddo

enddo

enddo

!$ACC END KERNELS

...

$ ur,us,ut,gxyz,dxm1,dxtm1)

endif

istat = cudaDeviceSynchronize()

!$acc end host_data

The utilization of shared memory in GPUs is very
important for writing optimized CUDA code since ac-
cess to shared memory is much faster than to global
memory. Shared memory is allocated per thread
block, therefore all threads in a block have access to
the same shared memory. On NVIDIA Kepler GPUs
with compute capability 3.x, shared memory has 32
banks, with each bank having a bandwidth of 64-bits
per clock cycle. Kepler GPUs are configurable where
either successive 32-bit words or 64-bit words are as-
signed to successive banks. This is particularly impor-
tant for cases with higher polynomial degree. Con-
sidering that our matrix-matrix operations use three
temporary arrays of size N3 a total of 64KB shared
memory is required for the case N = 14 with dou-
ble precision. An example of such implementation in
CUDA FORTRAN for polynomial degree 14 can be
seen in Algorithm 3.

Algorithm 3 CUDA FORTRAN version for the final
tuned derivative operations

subroutine local_grad_cuf14
real, intent(out) :: w(lx1,ly1,lz1,lelt)

real, intent(in) :: u(lx1,ly1,lz1,lelt)

real gxyz(lx1,ly1,lz1,2*ldim,lelt)

real, intent(in) :: dxm1(lx1,lx1)

real, intent(in) :: dxtm1(lx1,lx1)

real rtmp,stmp,ttmp,wijk1e,wijk2e

real, shared :: shdxm1(lx1,lx1)

real, shared :: shdxtm1(lx1,lx1)

real, shared :: shur(lx1,ly1,lz1)

real, shared :: shus(lx1,ly1,lz1)

real, shared :: shut(lx1,ly1,lz1)

integer e,i,j,k,l

e = blockIdx%x

k = threadIdx%z

j = threadIdx%y

i = threadIdx%x

if (k.eq.1) then

shdxm1(i,j) = dxm1(i,j)

shdxtm1(i,j) = dxtm1(i,j)

end if

call syncthreads()

rtmp = 0.0

stmp = 0.0

ttmp = 0.0

do l=1,lx1

rtmp = rtmp+shdxm1(i,l)*u(l,j,k,e)

stmp = stmp+shdxm1(j,l)*u(i,l,k,e)

ttmp = ttmp+shdxm1(k,l)*u(i,j,l,e)

enddo

shur(i,j,k) = gxyz(i,j,k,1,e)*rtmp

$ + gxyz(i,j,k,2,e)*stmp

$ + gxyz(i,j,k,3,e)*ttmp

rtmp = 0.0

stmp = 0.0

ttmp = 0.0

do l=1,lx1

rtmp = rtmp+shdxm1(i,l)*u(l,j,k+7,e)

stmp = stmp+shdxm1(j,l)*u(i,l,k+7,e)

ttmp = ttmp+shdxm1(k+7,l)*u(i,j,l,e)

enddo

shur(i,j,k+7) = gxyz(i,j,k+7,1,e)*rtmp

$ + gxyz(i,j,k+7,2,e)*stmp

$ + gxyz(i,j,k+7,3,e)*ttmp

call syncthreads()

...

3

Second NESUS Workshop • September 2015 • Vol. I, No. 1

III.2 GPUDirect Gather-Scatter operator

The Gather-Scatter operator is implemented by gs_op

routine in NekBone. Notice that we have already split
the gs_op routine with local gather and scatter opera-
tions on GPUs in [7]. In the implementation only the
non-local data need to be transferred between GPU
and CPU to conduct MPI communication. The non-
local data is exchanged with standard MPI subrou-
tines MPI_Irecv(), MPI_Isend(), MPI_Waitall()with
combination of MPI_Waitall. The modified gs_op op-
erator with local gather and scatter is described in Al-
gorithm 4.

Algorithm 4 Modified Gather-scatter operator
(adapted from [7]).

unew_l = u_l

! u_g = Q u_l Local Gather on GPU

!$ACC PARALLEL LOOP

u_g = 0

do i = 1, nl

li = lgl(1,i)

gi = lgl(2,i)

u_g(gi) = u_g(gi)+u_l(li)

enddo

gs_op(u_g,1,1,0) ! MPI communication between CPUs

! u_l = Q^T u_g Local Scatter on GPU

!$ACC PARALLEL LOOP

do i = 1, nl

li = lgl(1,i)

gi = lgl(2,i)

unew_l(li) = u_g(gi)

enddo

In [8] a new version of Gather-scatter operator with
GPUDirect is developed. The new version acceler-
ates all four parts of the gather-scatter routine: local-
gather, global-scatter, global-gather, and local-scatter,
whereas previous versions only accelerated the local
parts. Accelerating the global loops allows us to use
the GPUDirect pragmas, as the buffers are prepared
on the GPU. The local-gather and local-scatter loops
above are included into the tuned fgs_fields_acc. In
a similar manner, the global-scatter and global-gather
loops are also accelerated. In this new version, data
communication between CPUs is not necessary since
the GPU would efficiently perform the local additions
and does not need any information from other nodes.

IV. Performance Results

IV.1 Systems and compiler environments

We performed our simulations on few supercomput-
ing systems. Titan, a Cray XK7 system at the Oak
Ridge Leadership Computing Facility (OLCF), con-
sists of 18,688 AMD Opteron 6274 16-core CPUs and
18,688 Nvidia Tesla K20X GPU computing accelerator
with 6GB of GDDR5 memory each. Titan has a hybrid
architecture with peak performance of 27 Pflops and
40 PB of Lustre storage. The pair of nodes shares a
Gemini high-speed interconnect router in a 3D torus
topology. Curie is a PRACE Tier-0 system, installed at
CEA in France. The Curie system has total 144 hybrid
nodes. Each hybrid node has two 4-cores Westmere-
EP@2.67GHz CPUs and two Nvidia M2090. The com-
pute nodes are connected through a QDR InfiniBand
network and the topology of this InfiniBand network
is a full fat tree. Raven system at Cray has 8 XK7 com-
pute nodes with 8 NVIDIA Telsa K20 GPUs. A com-
pute node of Raven has one Opteron processor with a
total of 16 processor cores and 2 NUMA nodes with
a total of 16 GB of DDR3-1600 main memory. The
Opteron processors run at 2.1 GHz. Each GPU has 6
GB of GDDR5 memory.

Raven and Titan support GPU-Direct with both
Cray CCE and PGI compilers. The Curie system sup-
ports only the PGI compiler without GPU-Direct fea-
tures.

IV.2 Single GPU Performance tests

We optimized our GPU enabled code with CCE
and PGI compilers for the compute intensive matrix-
matrix multiplications routines, as discussed in a pre-
vious section using Algorithms 1–3. Figures 1–4 show
the single GPU performance tests on different plat-
forms. For all cases, the performance critically de-
pends on the computational workload on the GPU.
The more calculations are completed on the GPU, the
performance is higher. the performance increases as
the number of elements (E) increases and the perfor-
mance significantly increases with the polynomial or-
der (N). In addition, different compilers and versions
also affect the performance of NekBone.

On the Curie hybrid nodes the performance in-
creases around 5-10% with the optimized OpenACC
directives compared to the original case, see Figures 1
and 2. The maximum performance achieved is 43.6
Gflops with elements E = 4096 and polynomial order

4

Second NESUS Workshop • September 2015 • Vol. I, No. 1

Figure 1: The performance with the total number of grid
points n = E · N3 for E = 32, 64, . . . 8096 and N =

8, 10, 12, 14, 16 on single node of Curie using PGI compil-
ers. Original OpenACC directives.

N = 16.
Figure 4 shows the performance on Titan with Cray

CCE, PGI, and PGI CUDA FORTRAN compilers. The
CUDA FORTRAN code is around 10% faster than the
OpenACC code. However, it is also important to high-
light the little effort required to port an application
like NekBone to GPU systems using OpenACC com-
pared to the CUDA porting process. Furthermore, the
small number of additional lines of code required to
port an application to OpenACC is not comparable
with the addition of CUDA kernels code. Such is the
case that is necessary to rewrite the CUDA code for
each polynomial order (N) case.

IV.3 Multi GPU Performance tests

From Figures 1 and 2, even without MPI communi-
cation we can identify that the performance of the
matrix-matrix multiplication kernels highly depends
on the order of polynomial (N) and number of ele-
ments (E). Larger values of N give better performance.
This effect could be cause due to the amount of work
per thread (which is proportional to N) is greater,
which either leads to better kernel efficiency or assists
to offset the latency cost of launching kernels. Also,
the MPI communication overlaps the less workload
of GPUs. Consequently, the degradation performance
with the increase of the number of GPUs for the strong
scalability is expected. The performance of OpenACC
version is quite different from the original MPI ver-

Figure 2: The performance with the total number of grid
points n = E · N3 for E = 32, 64, . . . 8096 and N =

8, 10, 12, 14, 16 on single node of Curie using PGI compil-
ers. Optimized OpenACC directives.

Figure 3: The performance with the total number of grid
points n = E · N3 for E = 32, 64, . . . 8096 and N =

8, 10, 12, 14, 16 on single node of Raven using CCE com-
pilers.

5

Second NESUS Workshop • September 2015 • Vol. I, No. 1

Figure 4: The performance with the total number of grid
points n = E ·N3 for E = 512 and N = 8, 12, 16 on single
node of Titan using CCE and PGI compilers.

sion where parallel efficiency 0.6 has been measured
for strong scalability between 32768 and 1048576 MPI
ranks [14].

Figure 5 shows the NekBone strong scaling perfor-
mance, measured in Tflops, with up to 256 GPUs as
a solid line, while the black dashed line represents
the ideal strong scaling on Curie. The parallel effi-
ciency with 256 GPUs was 69% compared when us-
ing 32 GPUs. In order to get better performance we
should use as many elements per node as we can fit
into GPU memory (6GB for the Tesla M2090 card).

Each Curie hybrid node has two sockets and each
GPU is bound to a socket. By the default both pro-
cesses are running on only one GPU. As a result, the
CUDA_VISIBLE_DEVICES variable should be set to 0 or
1 depending on the rank of the process. In addition, it
is necessary to bind the processes to the GPU to make
sure they run on the same socket that hosts the desired
GPU. However the binding of the processes still slows
down the application since both processes share some
resources. For instance, I/O operations are slower or
the MPI communications may behave differently. Fig-
ures 6 and 7 show the weak scaling results on Curie
where we can see how the curve representing the op-
timized version is growing apart as more GPUs are
used in the simulation.

For the test on Titan, 1024 elements and 16th-order
polynomials were used for a total of 4, 194, 304 points
per GPU. Figure 8 shows the NekBone weak scaling
performance, measured in TFlops, with up to 16, 384

32 64 128 256
0

1

2

3

4

5

6

7

8

Number of GPUs
TF

lo
ps

Optimized
Original
Ideal

Figure 5: Strong scaling results with total number points
are n = 1024 · 163 · 32 on Curie using PGI compilers.

124 8 16 32 64 128
0

1

2

3

4

5

6

#GPUs

TF
lo

ps

Optimized

Original

Ideal

Figure 6: Weak scaling results with n = 1024 · 163 per
GPU on Curie using PGI compilers.

6

Second NESUS Workshop • September 2015 • Vol. I, No. 1

1 816 32 64 128 256
0

2

4

6

8

10

12

#GPUs

TF
lo

ps

Optimized

Original

Ideal

Figure 7: Weak scaling results with n = 1024 · 163 per
GPU on Curie using PGI compilers.

GPUs. The parallel efficiency on 16, 384 GPUs was
52.8% compared with single GPU and the maximum
performance obtained is 609.8 Tflops with optimized
OpenACC code. This good scaling results is achieved
by using the proper construction of the global commu-
nication and the code simplicity.

IV.4 GPUDirect tests

The Cray performance analysis tool CrayPat is used
to conduct the profiling analysis for the data commu-
nication. The tests are conducted on the Raven sys-
tem with 8 GPUs and the number of grid points is

n = 1024 · 163 per GPU. The total time on the MPI
communication is 2.52 sec with the modified gather-
scatter Algorithm 4, see Profiling by Function Group
Table using CrayPat below.

Table 1: Profile by Function Group and Function

Time% | Time | Imb. | Imb. | Calls |Group

| | Time | Time% | | Function

100.0% | 11.864466 | -- | -- | 34739.0 |Total

|--

| 94.7% | 11.235358 | -- | -- | 30332.2 |USER

||---

|| 19.9% | 2.366802 | 0.000701 | 0.0% | 200.0 |dssum_acc_.ACC_

...

|| 1.3% | 0.152252 | 0.000371 | 0.3% | 200.0 |dssum_acc_.ACC_

...

With the Algorithm developed in [8], the total time
is reduced to 2.36 sec. This can be seen in the next
Table.

Table 1: Profile by Function Group and Function

Time% | Time | Imb. | Imb. | Calls |Group

| | Time | Time% | | Function

100.0% | 11.806398 | -- | -- | 38739.0 |Total

Figure 8: Weak scaling performance with n = 1024 · 163

per GPU on Titan using CCE compilers.

|---

| 94.8% | 11.193856 | -- | -- | 34332.2 |USER

||--

|| 20.0% | 2.357107 | 0.000715 | 0.0% | 200.0 |fgs_fields_acc

...

V. Conclusions

A hybrid Nek5000 version was created to exploit
the processing power of multi-GPU systems by us-
ing OpenACC compiler directives. This work fo-
cused on advance GPU optimizing and tuning of the
most time-consuming parts of Nek5000, namely the
matrix-matrix multiplication operations and the pre-
conditioned linear solve operation. Furthermore, the
gather-scatter kernel used with MPI operations has
been redesigned in order to decrease the amount of
data transferred between the host and the accelerator.
The speed-up achieved using OpenACC directives is
1.30 with a 16th order polynomial on 16,384 GPUs
of the Cray XK7 supercomputer when compared to
16,384 full CPU nodes having 262,144 CPU cores in
total.

We have been able to compare performance results
of NekBone versions running with CUDA FORTRAN
and OpenACC. Although OpenACC has proven to be
a simpler solution for porting applications to GPUs,
our results demonstrate that CUDA is still more ef-
ficient and that in OpenACC there is still room for
improvement.

With a multi-GPU setup, the gather-scatter opera-
tor and the associated MPI communication can be im-
proved. The original gather-scatter operator was split

7

Second NESUS Workshop • September 2015 • Vol. I, No. 1

into two parts. First a local gather on the GPU is per-
formed, followed by the transfer of the boundary val-
ues at the interfaces of the domain. Then the bound-
ary values need to be copied to a local CPU memory,
communicated via network to the memory of another
CPU, and then transferred back a memory of a remote
GPU to finally carry out a local scatter on the GPU.
This approach allows a considerable reduction in the
amount of data to be moved from the GPU and CPU
memory and vice versa.
In spite of the reduction in the amount of data

transferred, the additional transfers between the host
and accelerator have an effect on the achievable per-
formance. In the future, we will employ the tech-
niques such as overlapping of GPU kernels with host-
accelerator memory transfers to further increase the
performance of the OpenACC version of Nek5000.

Acknowledgments

This work is partially supported by EU under the
COST Program Action IC1305: Network for Sustain-
able Ultrascale Computing (NESUS) and the Swedish
e-Science Research Center (SeRC). We acknowledge
PRACE for awarding us access to resource CURIE
based in France at CEA as well as the computing time
on the Raven system at Cray and the Titan supercom-
puter at Oak Ridge National Laboratory. We would
also like to thank Brent Leback for the CUDA FOR-
TRAN code used in the paper.

References

[1] J. H. Chen, A. Adhere, B. De Supinski, M. De-
Vries, E. Hawkes, S. Klasky, W. Liao, K. Ma,
J. Mellor-Crummey, N. Podhorszki, et al., “Teras-
cale direct numerical simulations of turbulent
combustion using S3d”, Computational Science &
Discovery vol. 2, no. 1, 2009.

[2] D. C. Jespersen, “Acceleration of a CFD code
with a GPU”, Scientific Programming, vol. 18, no.
3-4, pp. 193-201, 2010

[3] C. K. Aidun and J. R. Clausen, “Lattice Boltz-
mann method for complex flows”, Annual Review
of Fluid Mechanics, vol. 42, pp. 439-472, 2010

[4] K. Niemeyer and C. Sung, “Recent progress and
challenges in exploiting graphics processors in
computational fluid dynamics”, The Journal of Su-
percomputing, vol. 67, no. 2, pp. 528-564, 2014.

[5] OpenACC standard,
http://www.openacc-standard.org

[6] J. Gong, S. Markidis, M. Schliephake, E. Laure,
D. Henningson, P. Schlatter, A. Peplinski, A. Hart,
J. Doleschal, D. Henty, and P. Fischer, Nek5000
with OpenACC, in Solving Software Challenges for
Exascale, the International Conference on Exascale
Applications and Software, EASC 2014 Stockholm,
Sweden, April 20-23, 2014, Stefano Markidis, Er-
win Laure (Eds.), Springer LNCS8759, 2015.

[7] S. Markidis, J. Gong, M. Schliephake, E. Laure, A.
Hart, D. Henty, K. Heisey, and P. Fischer, “Ope-
nACC acceleration of the Nek5000 spectral ele-
ment code”, International Journal of High Perfor-
mance Computing Applications, vol. 29, pp. 311-319,
2015.

[8] M. Otten, J. Gong, A. Mametjanov, A. Vose,
J. Levesque, P. Fischer, and M. Min “An
MPI/OpenACC Implementation of a High Order
Electromagneticcs Solver with GPUDirect Com-
munication”, accepted in International Journal of
High Performance Computing Applications.

[9] P. F. Fischer, J. W. Lottes, and S. G. Kerkemeier,
Nek5000 web page, Web page: http://nek5000.
mcs. anl. gov.

[10] A. T. Patera, “A spectral element method for fluid
dynamics: laminar flow in a channel expansion”,
Journal of Computational Physics, vol. 54, No. 3,
pp. 68-488, 1984

[11] H. M. Tufo and P. F. Fischer, “Terascale spectral el-
ement algorithms and implementations”, in Pro-
ceedings of the 1999 ACM/IEEE conference on Super-
computing (CDROM), ACM, 1999, p. 68.

[12] M. Deville, P. Fischer, and E. Mund, High-order
methods for incompressible fluid flow, Cambridge
University Press, 2002.

[13] NekBone: Proxy-Apps for Thermal Hydraulics,
https://cesar.mcs.anl.gov/content/software/

thermal_hydraulics

[14] Nek5000 strong scaling tests
to over one million processes.
http://nek5000.mcs.anl.gov/index.php/Scaling

8

http://www.openacc-standard.org
https://cesar.mcs.anl.gov/content/software/
thermal_hydraulics
http://nek5000.mcs.anl.gov/index.php/Scaling

	Introduction
	Nek5000 and its NekBone benchmark
	Optimized OpenACC implementations
	Matrix-Matrix Multiplications
	GPUDirect Gather-Scatter operator

	Performance Results
	Systems and compiler environments
	Single GPU Performance tests
	Multi GPU Performance tests
	GPUDirect tests

	Conclusions

